Spool Valve motors incorporate the proven orbit motor principle to provide high torque at low speeds. ## Spool Valve Motors ### Highlights ### **Product Description** Char-Lynn spool valve motors distribute pressurized fluid into and out of the Orbit gear set (Gerotor or Geroler) via valve slots integrated into the output shaft. The spool valve motors incorporate both valving and hydrodynamic journal bearings into a common shaft design. The valve section (spool valve) can be optimized for low flow, low speed needs using a low speed spool option to enhance smooth running performance. These motors incorporate the proven orbit motor principle to provide high torque at low speeds. Motor shaft rotation can be instantly reversed by changing direction of input/output flow while generating equal torque in either direction. The displacements available provide a wide variety of speeds and torques from any spool valve motor series. ### Features, Benefits, and Applications ### **Features** - Proven Orbit Motor Principle - Hydrodynamic Journal Bearings - Constant Clearance Geroler - Three-Zone Pressure Design - Reduced drive runningangle - High-pressure seals - Modular design #### **Benefits** - Compact, powerful package - Infinite bearing life (at rated loads) - High efficiency - Increases shaft seal & bearing life - Smooth operation, increases drive life - Reduces leakage - Design flexibility - Economically tailored solutions ### **Applications** - Harvesters - Augers - Spreaders - Machine tools - Conveyors - Winches - Turf care equipment - Food processing - Aerial Work Platforms - Anywhere a compact drive with high output torque is needed ### **Design Features** Spool valve technology is typically used where compact, economical solutions are most needed. Spool valve motors use a spool valve to precisely time and control flow through the orbit gear set (Gerotor or Geroler). Inlet flow is directed into and out of the orbit set via slots in the spool and passages through the motor housing. The result is a very costeffective compact package suited to many application requirements. The three primary components in the motor are the orbit star, drive and output shaft. H, S and T Series incorporate the spool valve and hydrodynamic bearings in the motor shaft. The W series is similar except a ball bearing is used for the front bearing for increased side-load capacity. Due to its compact size and high speed capability, the J Series is unique and utilizes a separate dedicated spool and spool valve drive. All motors utilize Eaton's constant-clearance Geroler technology except the H Series, which continues to use the time-proven H motor gerotor set. These motors all use a three-zone pressure design consisting of three unique pressure areas: 1) inlet, 2) return, 3) case. This provides the capability to limit motor case pressure and allows the use of several case pressure options for extended shaft seal and thrust bearing life. Below is a quick-guide to help select the proper motor for your application: ### MOTOR QUICK-GUIDE (BASED ON MAXIMUM CONTINUOUS RATINGS) | Series | Output Torque
Nm [lb-in] | Pressure
bar [psi] | Flow
lpm [gpm] | Side Load
kg [lbs] | | |----------|-----------------------------|-----------------------|-------------------|-----------------------|--| | J Series | 62
[550] | 140
[2030] | 21
[5.5] | 196
[430] | | | H Series | 407
[3607] | 124
[1800] | 57
[15] | 635
[1400] | | | S Series | 430
[3800] | 135
[2000] | 55
[15] | 635
[1400] | | | T Series | 450
[4000] | 155
[2250] | 55
[15] | 635
[1400] | | | W Series | 410
[3625] | 165
[2400] | 68
[18] | 845
[1900] | | ^{*} The above are provided as guidelines only. Actual ratings vary depending on final motor configuration ### Highlights ### **Description** Eaton's latest offering in LSHT motor technology is the new T Series Motor with Parking Brake. T Series Motor with Parking Brake utilizes brake pads that rotate at 6 times the speed of the output shaft, thereby giving the brake a 6-to-1 mechanical advantage. The T Series Motor with Parking Brake utilizes the same Geroler, and Spool Valve technologies as the standard Char-Lynn motors. Therefore, in addition to providing dependable load-holding capability, T Series Motor with Parking Brake provides the same smooth, reliable operation, with similar performance, as the T Series Motor. ### **Specifications** | 11 Displacements | |------------------------| | 55 [15] Continuous*** | | 75 [20] Intermittent** | | Up to 1055 RPM | | 155 [2250] Cont.*** | | 190 [2750] Inter.** | | 441 [3905] Cont.*** | | 486 [4300] Inter.** | | | ^{***} Continuous— (Cont.) Continuous rating, motor may be run continuously at these ratings. ^{**} Intermittent— (Inter.) Intermittent operation, 10% of every minute. Crane and winches Boom Lift (Swing) Maintenance Equipment #### **Features** - Integrated, Compact, Patented Design - Capability of Combining 4 inventory items into a single assembly (motor, brake, counter-balance valve, brake release line) - Rear-mounted integrated brake with 6:1 torque advantage - Access port for manual brake release (for over-riding brake in the event of loss of release pressure.) #### **Benefits** - Cost-effective Packaged System Solution - Simplifies ordering and inventory requirements - Reduces assembly labor - Design Flexibility - Wet brake is environmentally protected and provides long life ### **Applications** - Truck-Mounted Equipment (boom rotate and winch) - Conveyors PositionersIndexers - Marine Cranes (boom rotate and winch) - Fishing Winches - Recycling and Refuse Equipment - Vehicle Recovery Winches - Mining Equipment - Specialty Utility Vehicles/ Machines - Forestry Grapples - Agricultural Equipment - Railroad Equipment - Airport Support Vehicles - Lawn & Turf Equipment - Anywhere Load-Holding is Needed in a Low-Speed High-Torque Drive System ### **Application Information** ### **Principle of Operation** The wet brake is a springapplied / pressure release design. Load-holding is applied by a mechanical spring and released by hydraulic pressure. The spring force holds the brake on when hydraulic pressure is absent. #### Release Pressure Release pressure is defined as the amount of pressure required to fully release the brake. The brake pressure cavity is common (shared) with the motor case. As a result, maximum release pressure is constrained by the motor case-pressure capability. The T Series Motor with Parking Brake incorporates a shaft seal capable up to 1500 psi (see page B-4-15). However, seal life is reduced at higher case pressure. ### **Residual Pressure** Residual pressure is the pressure trapped in the system by restrictions or long return lines. Residual pressure in the motor case will lower the rated load holding torque of the brake. Therefore, special attention needs to be given when applying this product. Keep in mind that long return lines create higher pressure that will reduce brake holding torque. In applications with high system pressures, the use of a pressure reducing valve to limit case and release pressure is recommended. ### Holding Torque and Motor Output Torque Holding torque is based on grade holding requirements for a vehicle or other load holding requirements in the application. System pressure and motor displacement are the factors in determining motor output torque. Motor displacement, measured in cubic centimeters or cubic inches, is the volume of fluid required to make one revolution. Motor output torque is the rotary force and is usually measured in inch pounds, newton meters or foot pounds. Maximum motor torque depends on pressure and motor displacement. Both output shaft size and shaft type can also affect motor torque. The T Series Motor with Parking Brake load holding capacity is factory set to match any limiting factor in each specific motor configuration (e.g. displacement, output shaft, etc). ### Note: Eaton Corporation does not approve any products for customer applications. It is the sole responsibility of the customer to qualify and verify the correct operation of products in their systems. #### Note: Special attention should be given to system back pressure. System back pressure directly affects brake release pressure and can cause the brake to release at undesired conditions. ### Note: The T Series with parking brake is not compatible with water based fluids. ### **Typical Applications** #### Winch ### **Machine Drive** ### **Swing Boom** ### **Specifications** ### SPECIFICATION DATA — T SERIES WITH PARKING BRAKE MOTORS | Displ. cr
[in³/r] | m³/r | 36 [2.2] | 49 [3.0] | 66 [4.0] | 80 [4.9] | 102 [6.2] | 131 [8.0] | 157 [9.6] | 195 [11.9] | 244 [14.9] | 306 [18.7] | 370 [22.6] | |------------------------------|------------------------------------|----------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Max. Sp
Continuo | eed (RPM) @
ous Flow | 1021 | 906 | 849 | 694 | 550 | 426 | 355 | 287 | 229 | 183 | 152 | | Flow
LPM
[GPM] | Continuous
Intermittent | 38 [10]
38 [10] | 45 [12]
57 [15] | 57 [15]
68 [18] | 57 [15]
76 [20] | Torque
Nm
[lb-in] | Continuous
Intermittent ** | 76 [672]
93 [824] | 105 [928]
118 [1131] | 138 [1222
168 [1488] | 174 [1541]
212 [1872] | 219 [1936]
264 [2339] | 251 [2226]
307 [2718] | 297 [2628]
359 [3178] | 359 [3178]
437 [3864] | 410 [3633]
485 [4290] | 441 [3905]
483 [4275] | 430 [3811]
486 [4300] | | Pressure
∆ Bar
[∆ PSI] | e Continuous *
Intermittent * * | 155 [2250]
**190 [2750] | | 155 [2250]
190 [2750] | | | | 138 [2000]
172 [2500] | | | | 90 [1300]
103 [1500] | ### Note: See page B-4-2 for additional motor specification notes and definitions. The T Series with Parking Brake performance is similar to the standard T Series motor. High speed conditions may reduce performance on T Series with Parking Brake. ### T SERIES BRAKE HOLDING TORQUE SETTINGS: | Shaft
Code | Output Shaft Description [in ³ /r] | 2.2 | 3.0 | 4.0 | 4.9 | 6.2 | 8.0 | 9.6 | 11.9 | 14.9 | 18.7 | 22.6 | |---------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 18 | 1 Tapered w/key and nut | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 | | 02 | 1 SAE 6B Splined | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 5,000 | 5,000 | 5,000 | 5,000 | 5,000 | | 24 | 25mm Straight w/key | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | | 01 | 1 Straight w/key | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | | 07 | 1 Straight w/.31 dia. crosshole | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | | 08 | 1 Straight w/.40 dia. crosshole | 2,000 | 2,000 | 2,000 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | 3,500 | | 16 | 7/8 SAE B 13T Splined | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | | 17 | 7/8 SAE B Straight w/key | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | in-lbs Full Capacity Brake in-lbs Limited Capacity Brake ### Note: The factory setting values are used for each motor based on motor displacement and shaft type. ### **Dimensions** (Refer to pages B-4-19 thru B-4-22 for shaft and port dimensions.) ### Standard Rotation Viewed from Shaft End Port A Pressurized — CW Port B Pressurized — CCW ### T-SERIES WITH PARKING BRAKE DIMENSIONS Displacement X Y | Displacement
cm ³ /r [in ³ /r] | X
mm [inch] | Y
mm [inch] | | |---|----------------|----------------------|--| | 02 | 190.2 [7.49] | 143.9±0.9 [5.66±0.3] | | | A2 | 190.8 [7.51] | 144.5±0.9 [5.69±0.3] | | | 03 | 192.5 [7.58] | 146.3±0.9 [5.76±0.3] | | | A 3 | 194.3 [7.65] | 148.1±0.9 [5.83±0.3] | | | 04 | 195.6 [7.70] | 149.3±0.9 [5.88±0.3] | | | 05 | 198.4 [7.81] | 152.0±0.9 [5.98±0.3] | | | 06 | 202.2 [7.96] | 155.9±0.9 [6.14±0.3] | | | 08 | 207.5 [8.17] | 161.3±0.9 [6.35±0.3] | | | 10 | 212.6 [8.37] | 166.2±0.9 [6.54±0.3] | | | 12 | 219.2 [8.63] | 172.9±0.9 [6.81±0.3] | | | 15 | 228.3 [8.99] | 181.9±0.9 [7.16±0.3] | | | 19 | 239.5 [9.43] | 193.3±0.9 [7.61±0.3] | | | 23 | 251.2 [9.89] | 205.0±0.9 [8.07±0.3] | | ### Note: ### **Standard Rotation** When facing shaft end of motor shaft to rotate clockwise when port "A" is pressurized, counterclockwise when port "B" is pressurized ### **Reverse Rotation** When facing shaft end of motor shaft will rotate clockwise when port "B" is pressurized, counterclockwise when port "A" is pressurized ### Brake Release and Motor Case Pressure The T Series Motor with Parking Brake is durable and has long life as long as the recommended case pressure is not exceeded. Allowable case pressure is highest at low shaft speeds. Motor life will be shortened if case pressure exceeds recommended ratings (acceptability may vary with application). Refer to the Case Pressure/ Shaft Seal chart below. This chart is based on case pressure and motor shaft speed. A minimum release pressure of 17 Bar [250 PSI] must be maintained to fully release the brake. P_C≈6 DP+ P₂ P_C= Case Pressure P₁ = Inlet Line Pressure P₂ = Back Pressure DP = P₁-P₂ ### **Product Numbers** Use digit prefix — 185 plus four digit number from charts for complete product number — Example 185-2068. Orders will not be accepted without three digit prefix. ### **Standard Valving** | Otanaara | • | | | | | | | | | | | | |-----------------|---|---------------------------|----------------------|------------------------------------|--------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--------------| | MOUNTING | SHAFT | PORT
SIZE | DISPL. cr | n ³ /r [in ³ | 3/r1 / PRO | DUCT NU | IMRER | | | | | | | ilo Oler III e | OHALL | UILL | 3.0 | 4.0 | 4.9 | 6.2 | 8.0 | 9.6 | 11.9 | 14.9 | 18.7 | 22.6 | | | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2000
185-2010 | 2001
2011 | 2002
2012 | 2003
2013 | 2004
2014 | 2005
2015 | 2006
2016 | 2007
2017 | 2008
2018 | 2009
2019 | | ?-Bolt | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2020
185-2030 | 2021
2031 | 2022
2032 | 2023
2033 | 2024
2034 | 2025
2035 | 2026
2036 | 2027
2037 | 2028
2038 | 2029
2039 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2040
185-2050 | 2041
2051 | 2042
2052 | 2043
2053 | 2044
2054 | 2045
2055 | 2046
2056 | 2047
2057 | 2048
2058 | 2049
2059 | | | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2060
185-2070 | 2061
2071 | 2062
2072 | 2063
2073 | 2064
2074 | 2065
20 7 5 | 2066
2076 | 2067
2077 | 2068
2078 | 2069
2079 | | 1-Bolt | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2080
185-2090 | 2081
2091 | 2082
2092 | 2083
2093 | 2084
2094 | 2085
2095 | 2086
2096 | 2087
2097 | 2088
2098 | 2089
2099 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2100
185-2110 | 2101
2111 | 2102
2112 | 2103
2113 | 2104
2114 | 2105
2115 | 2106
2116 | 2107
2117 | 2108
2118 | 2109
2119 | | 2-Bolt
SAE B | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2120
185-2130 | 2121
2131 | 2122
2132 | 2123
2133 | 2124
2134 | 2125
2135 | 2126
2136 | 2127
2137 | 2128
2138 | 2129
2139 | | | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2140
185-2150 | 2141
2151 | 2142
2152 | 2143
2153 | 2144
2154 | 2145
2155 | 2146
2156 | 2147
2157 | 2148
2158 | 2149
2159 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2160
185-2170 | 2161
2171 | 2162
2172 | 2163
2173 | 2164
2174 | 2165
21 7 5 | 2166
2176 | 2167
2177 | 2168
2178 | 2169
2179 | ### Low Speed Valving | | | PORT | | | | | | | | | | | |-----------------|----------------------------|---------------------------|----------------------|--------------|--------------|--------------|--------------|-----------------------|--------------|-----------------------|---------------|--------------| | MOUNTING | SHAFT | SIZE | DISPL. cr | n³/r [in³, | /r] / PROE | DUCT NU | MBER | | | | | | | | | | 3.0 | 4.0 | 4.9 | 6.2 | 8.0 | 9.6 | 11.9 | 14.9 | 18.7 | 22.6 | | | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2180
185-2190 | 2181
2191 | 2182
2192 | 2183
2193 | 2184
2194 | 2185
2195 | 2186
2196 | 2187
2197 | 2188
2198 | 2189
2199 | | 2-Bolt | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2200
185-2210 | 2201
2211 | 2202
2212 | 2203
2213 | 2204
2214 | 2205
2215 | 2206
2216 | 2207
2217 | 2208
2218 | 2209
2219 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2220
185-2230 | 2221
2231 | 2222
2232 | 2223
2233 | 2224
2234 | 2225
2235 | 2226
2236 | 2227
2237 | 2228
2238 | 2229
223 | | | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2240
185-2250 | 2241
2251 | 2242
2252 | 2243
2253 | 2244
2254 | 2245
2255 | 2246
2256 | 2247
2257 | 2248
2258 | 2249
2259 | | 4-Bolt | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2260
185-2270 | 2261
2271 | 2262
2272 | 2263
2273 | 2264
2274 | 2265
22 7 5 | 2266
2276 | 2267
2277 | 2268
2278 | 2269
2279 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2280
185-2290 | 2281
2291 | 2282
2292 | 2283
2293 | 2284
2294 | 2285
2295 | 2286
2296 | 2287
2297 | 2288
2298 | 2289
2299 | | | 1 Keyed | 7/8-14 O-Ring
Manifold | 185-2300
185-2310 | 2301
2311 | 2302
2312 | 2303
2313 | 2304
2314 | 2305
2315 | 2306
2316 | 2307
2317 | 2308
2318 | 2309
2319 | | 2-Bolt
SAE B | 6B Splined | 7/8-14 O-Ring
Manifold | 185-2320
185-2330 | 2321
2331 | 2322
2332 | 2323
2333 | 2324
2334 | 2325
2335 | 2326
2336 | 2327
2337 | 2328
2338 | 2329
2339 | | | 13T Splined
16/32 pitch | 7/8-14 O-Ring
Manifold | 185-2340
185-2350 | 2341
2351 | 2342
2352 | 2343
2353 | 2344
2354 | 2345
2355 | 2346
2356 | 2347
2357 \ | 2348
2358 | 2349
2359 | | | | | | | | | | | | | $\overline{}$ | | Motors with the low speed valving option enable very smooth low speed operation while maintaining high torque. Designed to run continuously at up to 200 RPM at standard rated pressures and reduced flows, this option provides smooth operation at low speeds. Furthermore, they resist slippage and have more momentary load holding ability than the standard motors. Motors with this valving are not intended for low pressure applications (41 Bar [600 PSI] Minimum). Shaft side / radial load ratings are not affected by this valving. For a T Series motor with parking brake configuration not shown in the charts above use the model code system on page B-4-17 to specify the product in detail. (185-2357) **Model Code** The following 25-digit coding system has been developed to identify all of the configuration options for the T Series Motor with Parking Brake. Use this model code to specify a motor with the desired features. All 25-digits of the code must be present when ordering. You may want to photocopy the matrix below to ensure that each number is entered in the correct box. 1 Product M - Motor 2, 3 Series **T B** – T Series Motor with Parking Brake 4, 5, 6 Displacement cm³/r [in³/r] **022** - 36 [2.2] **030** - 49 [3.0] **040** - 66 [4.0] **049** - 80 [4.9] **062** - 102 [6.2] **080** - 131 [8.0] **096** - 157 [9.6] **119** - 195 [11.9] **149** – 244 [14.9] **187** – 306 [18.7] **226** - 370 [22.6] ### 7 8 Mounting Type **AA** – 2 Bolt (Standard) 82,5 [3.248] Dia. and 3,05 [.120] pilot, 13,59 [.535] Dia. Mounting Holes 106,35 [4.187] Dia. B.C. **BA** – 4 Bolt (Standard) 44,40 [1.748] Dia. x 3,05 [.120] pilot, .375-16 UNC-2B Mounting Holes 82,55 [3.250] Dia. B.C. **CA** – 2 Bolt (Standard) 82,50 [3.248] Dia. x 6,10 [.240] pilot, 10,41 [.410] Dia. Mounting Holes 106,35 [4.187] Dia. B.C. (SAE A) **DA** – 2 Bolt (Std.) 101,60 [4.000] Dia. x 6.10 [.240] pilot, 14,35 [.565] Dia. Mounting Holes 146,05 [5.750] Dia. B.C. (SAE B) **EA** – 4 Bolt Magneto 82,50 [3.248] Dia. x 3,05 [.120] Pilot, 13,59 [.535] Dia. Mounting Holes 106,35 [4.187] Dia. B.C. **FA** – 4 Bolt (Standard) 44,40 [1.748] Dia. x 3,05 [.120] pilot, M10 x 1.5-6H Mounting Holes on 82,55 [3.250] Dia. B.C. ### 9 , 10 Output Shaft Description **01** – 25,4 [1.00] Dia. Straight, Woodruff Key, .250-20 UNC-2B Hole in Shaft End **02** – 25,4 [1.00] Dia. SAE 6B Spline, .25-20 UNC-2B Hole in Shaft End **16** – SAE 13 Tooth Spline, 16/32 Pitch, 21,74 (.856) Dia. (SAE B) **18** – 25,4 [1.00] Dia. Tapered, Woodruff Key and Nut, 34,92 [1.375] Taper Length **24** – 25.00 [.984] Dia. Straight, 8.0 [.315] Key, MB x 1.25-6H Hole in Shaft End ### 11 12 Port Type **AA** – .875-14 UNF-2B SAE O-Ring Ports **AB** – .500-14 NPTF Dryseal Pipe Thread Ports **AC** – Manifold (.3125-18 UNC-2B Mounting Holes) **AD** – Manifold Ports (MB x 1.25-6H Mounting Holes) ### 13 Case Flow Options 0 - None Specified 3 - Manifold Case Drain ### 14 Geroler Options A - Standard **B** - Free Running ### 15 Shaft Options 0 - None N - Electroless Nickel Plated ### 16 17 Seal Options 00 - Standard Seals 03 - Vitron Seals 05 - Vented Two-Stage Seal **07** – High Pressure Shaft Seal ### 18 Speed Sensor Options 0 - None **A** – 12 mm Digital Speed Pickup (15 Pulse) without Lead Wire (A=Power, B=Common, C=Signal) ### 19 Valve Options **A** – None ### 20, 21 Special Features (Hardware) 00 - None Specified AB - Low Speed Valving ### 22 Special Assembly Instructions 0 - None 2 - Flange Rotation 90° ### 23 Paint/Packaging Options 0 - No Paint **A** – Painted Low Gloss Black ### 24 Customer ID/ Nameplate Options 0 – None Specified ### 25 Design Code **B** – Two (2) # Case Pressure and Case Drain — H, S, and T Series Char-Lynn H Series, S Series and T Series motors are durable and have long life as long as the recommended case pressure is not exceeded. Allowable case pressure is highest at low shaft speeds. Consequently, motor life will be shortened if case pressure exceeds these ratings (acceptability may vary with application). Determine if an external case drain is required from the case pressure seal limitation chart below— chart based on case pressure and shaft speed. If a case drain line is needed, connect drain line to assure that the motor will always remain full of fluid. A pressure restriction should be added to the case drain line, during which a motor case pressure of 3,5 Bar [50 PSI] is maintained. $P_C \approx .6 ? P + P_2$ $P_C = Case Pressure$ $P_1 = Inlet Line Pressure$ $P_2 = Back Pressure$ $? P = P_1 - P_2$ Case Pressure Seal Limitation ### H, S and T Series (101-, 103-, 158-, 185-) ### Side Load Capacity The hydrodynamic bearing has infinite life when shaft load ratings are not exceeded. Hence, the shaft side load capacity is more than adequate to handle most externally applied loads (such as belts, chains, etc.), providing the motor to shaft size is applied within its torque rating. Allowable side load chart, shaft load location drawing and load curves (below) are based on the side / radial loads being applied to shaft at locations A, B, and C, to determine the shaft side load capacity at locations other than those shown use the formula (shown below). For more information about shaft side loads on Char-Lynn motors contact your Eaton representative. #### Note: When the speed sensor option is used, side load ratings are reduced 25%. | RPM | ALLOWABLE SHAFT SIDE LOAD — KG [LB] | | | | | | | | | | |-----|-------------------------------------|------------|------------|--|--|--|--|--|--|--| | | A | В | С | | | | | | | | | 900 | 154 [339] | 136 [300] | 118 [261] | | | | | | | | | 625 | 205 [452] | 181 [400] | 158 [348] | | | | | | | | | 500 | 256 [565] | 227 [500] | 197 [435] | | | | | | | | | 400 | 307 [678] | 272 [600] | 237 [522] | | | | | | | | | 300 | 410 [904] | 363 [800] | 316 [696] | | | | | | | | | 200 | 718 [1582] | 635 [1400] | 552 [1216] | | | | | | | | ### H, S and T Series (101, 103- 158, 185) ### **Dimensions** Shafts Shaft Size Motor Torque Combination Limit Guide ### 1 in. Dia. Straight with Woodruff Key Mounting Surface* 46,0/44,5 [1.81/1.75] 6,6/4,6 [.26/.18] 25,40/25,15 [1.000/.990] Dia. Key x 6,375/6,350 [.2510/.2500] Wide 19,1/18,0 [.75/.71] 28,30/27,89 [1.114/1.098] 25,40/25,37 1/4-20 UNC-2B [1.000/.999] x 14,2 [.56] Min. Deep Dia. ### 1 in. Dia. Straight Shaft with .315 Dia. Crosshole # Mounting Surface* 51,6/50,0 [2.03/1.97] 11,7/10,7 [.46/.42] 25,40/25,37 [1.000/.999] [1.000/.999] Dia. Thru 1 in. Dia. Straight Shaft with .406 Dia. Crosshole ^{* 2} Bolt SAE B mounting flange has a greater pilot thickness and a thinner mounting plate (end of shaft to flange, add 3,3 [.13]). ### H, S and T Series (101-, 103- 158-, 185-) ### **Dimensions** Shafts ### 1 in. Dia. Tapered Shaft with Woodruff Key and Nut ### 25mm Dia. Straight Shaft with 8mm Keyway ### 7/8 in. Dia. Straight Shaft with Key ### 7/8 in. Dia. SAE B Shaft 13 T Spline d ^{* 2} Bolt SAE B mounting flange has a greater pilot thickness and a thinner mounting plate (end of shaft to flange, add 3,3 [.13]). ### H, S and T Series (101-, 103- 158-, 185-) ### **Mounting Options** ### Note: Mounting Surface Flatness Requirement is _____,13mm [.005 inch] Max. ### **4 Bolt Magneto** **Base Bock Mounting Kits** ### 2 Bolt SAE B ### H, S and T Series (101-, 103-, 158-, 185-) ### **Dimensions** Ports ### **Ports** End Ports — H Series only G 1/2 (BSP) (2) or 3/4-16 O-Ring (2) ### Standard Rotation Viewed from Drive End Port A Pressurized — CW Port B Pressurized — CCW #### Note: End ported motor pressure is derated. Reference page B-2-2 for ratings. ### **End Ports (H Series only)** Use of Teflon Tape Sealant/ Lubricant (with 1/2 14 NPTF Port Connectors only). When using fittings with Teflon tape, be careful when taping and tightening. Over tightening or improperly taped fittings can cause damage to housing or leakage. ### Use the following procedures: - Wrap approx. 1 1/2 Turns of 13 mm [1/2 in.] wide Teflon Tape around fitting threads — start tape 2 threads up from end of fitting. - Tighten threads to a Maximum of 34 Nm [25 lb-ft]. — Do Not Tighten Further — - If fittings leak when tightened to maximum torque, either retape, reseal, or replace fittings. Optional Case Drain Port Location (T-Series Only) *2 Bolt SAE B mounting flange has a greater pilot thickness and a thinner mounting plate. 7/8-14 ports 42,7 [1.64] 7/8-14 UNF 0-ring Ports (2) 45,7 22,9 [.90] [1.80] 44,7 Side Ports **H** Series S Series T Series Mounting_Surface* [1.76] Max. (T-Series Only) 5/16-18 UNC (12,7 [.50] Max. Screw 63,5 [2.50]— as a greater nting plate. Thread Engagement) (4) or M8x1,25 (12,7 [.50] Max. Screw Thread Engagement) (4) 5/16-18 UNC (12,7 [.50] Max. Screw Thread Engagement) (4) or M8 x 1,25 (12,7 [.50] Max. Screw Thread Engagement) (4) ### Note: End ported motor option is derated to 1400 continuous, 1700 psi intermittent. ### **Notes**